All-Russian Research-to-Practice Conference "Tuberculosis and HIV-infection - Danger of the Dual Epidemics. Topical Issues of Prevention, Diagnostics and Treatment". October 2-3, 2014, Moscow, Russia

TB associated with HIV infection in the world - WHO strategy for TB / HIV

Alberto Matteelli Global Tuberculosis Programme WHO/HQ, Geneva.

Content

- Burden and response so far
- Policy to reduce TB/HIV mortality
- Policy to prevent HIV associated TB
- We need to optimize the service delivery model

The Global Burden of TB, 2012

TB is responsible for one in four AIDS deaths

GLOBAL TB PROGRAMME TB Global report 2013

Post-2015 Global TB Strategy Pillars and Principles

GLOBAL TB PROGRAMME

PILLAR I AND COMPONENTS

Integrated, Patient-centred Care and Prevention

A. Early diagnosis of TB including universal drug susceptibility testing; systematic screening of contacts and high-risk groups

B. Treatment of all people with TB including drug-resistant TB, and patient support

C. Collaborative TB/HIV activities; and management of co-morbidities

D. Preventive treatment for persons at high-risk and vaccination for TB

New additions to or enhancements of the current strategy are shown in yellow

Collaborative TB/HIV activities - 2012

A. Establish and strengthen the mechanisms for delivering integrated TB and HIV see

A.1. Set up and strengthen a coordinating body for collaborative TB/HIV activities function

A.2. Determine HIV prevalence among TB patients and TB prevalence among people livin.

A.3. Carry out joint TB/HIV planning to integrate the delivery of TB and HIV services

A.4. Monitor and evaluate collaborative TB/HIV activities

B. Reduce the burden of TB in people living with HIV and initiate early antiretroviral therapy (the Three I's for HIV/TB)

B.1. Intensify TB case-finding and ensure high quality antituberculosis treatment

B.2. Initiate TB prevention with Isoniazid preventive therapy and early antiretroviral therapy

B.3. Ensure control of TB Infection in health-care facilities and congregate settings

C. Reduce the burden of HIV in patients with presumptive and diagnosed TB

C.1. Provide HIV testing and counselling to patients with presumptive and diagnosed TB

C.2. Provide HIV prevention interventions for patients with presumptive and diagnosed TB

C.3. Provide co-trimoxazole preventive therapy for TB patients living with HIV

C.4. Ensure HIV prevention interventions, treatment and care for TB patients living with HIV

C.5. Provide antiretroviral therapy for TB patients living with HIV

Policy, advocacy and implementation have produced <u>results</u>

High burden of HIV/TB deaths

TB not recognized (until autopsy)

Some reasons for HIV/TB Deaths

- HIV not diagnosed
- TB not diagnosed
- TB not treated
- HIV not promptly treated
- MDRTB

HIV is not diagnosed in TB; ART cannot be started

Only half of PLHIV with TB are reported (reached) in 2012

Treatment outcomes for HIV-positive and HIV-negative TB patients, 2011.

WHO Global report 2013

ART should be given with TB treatment (both first and second line) as soon as possible.

Study	Setting	Arms	Median CD4 (IQR)	Primary endpoint	Findings
CAMELIA	Cambodia	2 vs. 8 weeks	25 (11 - 56)	Death	34%
STRIDE	Multi national	2 vs. 8-12 weeks	77 (36 – 145)	AIDS or death	42% ↓ AIDS/death in <50 CD4 (p=0.02)
SAPIT	South Africa	4 vs. 8-12 weeks	150 (77 – 254)	AIDS or death	68% ↓ AIDS/death in <50 CD4 (p=0.06)

PLHIV with TB should be given ART regardless of CD4 count

TB and HIV co-treatment in PLHIV

WHO policy on collaborative TB/HIV activities	
Guidelines for national programmes and other stakeholders	

	World Health Organization
GUIDELINES CONSOLIDATED GUIDELINES THE USE O ANTIRETROVIRAL DRUG FOR TREATING AN PREVENTING HIV INFECTIO	
RECOMPERATIONS FOR A FUELD HEAR FOR PROV	CH 113

- 6 months rifampicin containin TB treatment regimen throughout the course.
- Daily TB treatment at least during the intensive phase and ideally during the continuation phase
- Start ART irrespective of CD4 count, as soon as possible (within the first 2 weeks) after TB treatment initiation
- Use EFV as the preferred NNRTI

TB policy 2012 – HIV policy 2013

65% reduction in TB incidence during HAART

Antiretroviral Therapy for Prevention of Tuberculosis in Adults with HIV: A Systematic Review and Meta-Analysis

Amitabh B. Suthar¹*, Stephen D. Lawn^{2,3}, Julia del Amo⁴, Haileyesus Getahun⁵, Christopher Dye⁶, Delphine Sculier⁵, Timothy R. Sterling⁷, Richard E. Chaisson⁸, Brian G. Williams⁹, Anthony D. Harries^{10,11}, Reuben M. Granich¹

	ART		Control			
	TB cases	PY at risk	TB cases	PY at risk	HR (95% CI)	
All baseline CD4 counts						
Badri (2002) [41] *	9	375.1	82	848.2	0.19 (0.09 - 0.38)	10 million 1
Cohen (2011) [42] *, †	17	1661.9	33	1641.8	0.51(0.28 - 0.91)	
Golub (2007) [44]	221	11627	155	3865	0.41 (0.31 - 0.54)	
Golub (2009) [43]	44	952	200	2815	0.36 (0.25 - 0.51)	
Jerene (2006) [45]	6	162.6	9	80.9	0.11 (0.03 - 0.48)	
Lannoy (2008) [46]	-	-	-	-	0.10 (0.02 - 0.45)	
Miranda (2007) [47]	-	-	-	-	0.20 (0.10 - 0.60)	
Samandari (2011) [48] †	-	-	-	-	0.33 (0.11 - 0.94)	
Santoro-Lopes (2002) [49]	1	-	42	-	0.19 (0.03 - 1.09)	
Severe (2010) [50] †	18	100	36	2	0.50 (0.28 - 0.83)	
Zhou (2009) [51]	57	5186	40	985	0.40 (0.26 - 0.61)	
All studies					0.35 (0.28 - 0.44)	
Effect: $Z = 9.19, p < 0.001;$	10.00 Line 10.00 To 10.00 Line 10					
Baseline CD4 count 0 - 19	9 cells/µL	140	44	225	0.19 (0.07 0.47)	
Baseline CD4 count 0 - 19 Badri (2002) [41] *	9 cells/µL 5	148	41	235	0.18 (0.07 - 0.47)	
Baseline CD4 count 0 - 19 Badri (2002) [41] * Lannoy (2008) [46] All studies	<mark>9 cells/µL</mark> 5	148	41	235	0.18 (0.07 - 0.47) 0.11 (0.02 - 0.52) 0.15 (0.07 - 0.36)	
Effect: Z = 9.19, p < 0.001; Baseline CD4 count 0 - 19 Badri (2002) [41] * Lannoy (2008) [46] All studies Effect: Z = 4.39, p < 0.001;	9 cells/µL 5 - Heterogene	$148 - \frac{148}{2}$	41 - p = 0.609	235	0.18 (0.07 - 0.47) 0.11 (0.02 - 0.52) 0.16 (0.07 - 0.36)	
Baseline CD4 count 0 - 19 Badri (2002) [41] * Lannoy (2008) [46] All studies Effect: Z = 4.39, p < 0.001; Baseline CD4 count 200 -	9 cells/µL 5 - Heterogene 350 cells/µl	148 - eity: /² = 0%, L	41 - p = 0.609	235	0.18 (0.07 - 0.47) 0.11 (0.02 - 0.52) 0.16 (0.07 - 0.36)	
Baseline CD4 count 0 - 19 Badri (2002) [41] * Lannoy (2008) [46] All studies Effect: Z = 4.39, p < 0.001; Baseline CD4 count 200 - Badri (2002) [41] *	9 cells/µL 5 - Heterogene 350 cells/µl 2	148 - ∋ity: /² = 0%, ⊑ 121.2	41 - ρ = 0.609 27	235	0.18 (0.07 - 0.47) 0.11 (0.02 - 0.52) 0.16 (0.07 - 0.36) 0.12 (0.03 - 0.53)	
Baseline CD4 count 0 - 19 Badri (2002) [41] * Lannoy (2008) [46] All studies Effect: Z = 4.39, p < 0.001; Baseline CD4 count 200 - Badri (2002) [41] * Golub (2007) [44]	9 cells/µL 5 - Heterogene 350 cells/µl 2 143	148 - eity: /² = 0%, ⊑ 121.2		235 - 225	0.18 (0.07 - 0.47) 0.11 (0.02 - 0.52) 0.16 (0.07 - 0.36) 0.12 (0.03 - 0.53) 0.46 (0.33 - 0.63)	
Baseline CD4 count 0 - 19 Badri (2002) [41] * Lannoy (2008) [46] All studies Effect: Z = 4.39, p < 0.001; Baseline CD4 count 200 - Badri (2002) [41] * Golub (2007) [44] Lannoy (2008) [46]	9 cells/µL 5 - Heterogene 350 cells/µl 2 143 -	148 - eity: /² = 0%, ⊑ 121.2 -		235 - 225 -	0.18 (0.07 - 0.47) 0.11 (0.02 - 0.52) 0.16 (0.07 - 0.36) 0.12 (0.03 - 0.53) 0.46 (0.33 - 0.63) 0.10 (0.02 - 0.45)	
Baseline CD4 count 0 - 19 Badri (2002) [41] * Lannoy (2008) [46] All studies Effect: Z = 4.39, p < 0.001; Baseline CD4 count 200 - Badri (2002) [41] * Golub (2007) [44] Lannoy (2008) [46] Severe (2010) [50] †	9 cells/µL 5 - Heterogene 350 cells/µl 2 143 - 18	148 - eity: /² = 0%, ⊑ 121.2 - -		235 - 225 - -	0.18 (0.07 - 0.47) 0.11 (0.02 - 0.52) 0.16 (0.07 - 0.36) 0.12 (0.03 - 0.53) 0.46 (0.33 - 0.63) 0.10 (0.02 - 0.45) 0.50 (0.28 - 0.83)	
Effect: $Z = 9.19$, $p < 0.001$; Baseline CD4 count 0 - 19 Badri (2002) [41] * Lannoy (2008) [46] All studies Effect: $Z = 4.39$, $p < 0.001$; Baseline CD4 count 200 - Badri (2002) [41] * Golub (2007) [44] Lannoy (2008) [46] Severe (2010) [50] † All studies	9 cells/µL 5 - Heterogene 350 cells/µl 2 143 - 18	148 - eity: /² = 0%, ⊑ 121.2 - -		235 - 225 - - -	0.18 (0.07 - 0.47) 0.11 (0.02 - 0.52) 0.16 (0.07 - 0.36) 0.16 (0.03 - 0.53) 0.46 (0.33 - 0.63) 0.10 (0.02 - 0.45) 0.50 (0.28 - 0.83) 0.34 (0.19 - 0.60)	
Effect: $Z = 9.19$, $p < 0.001$; Baseline CD4 count 0 - 19 Badri (2002) [41] * Lannoy (2008) [46] All studies Effect: $Z = 4.39$, $p < 0.001$; Baseline CD4 count 200 - Badri (2002) [41] * Golub (2007) [44] Lannoy (2008) [46] Severe (2010) [50] † All studies Effect: $Z = 3.72$, $p < 0.001$;	9 cells/µL 5 - Heterogene 350 cells/µl 2 143 - 18 Heterogene	$148 - \frac{148}{-}$ eity: $l^2 = 0\%$, $121.2 - \frac{1}{-}$ eity: $l^2 = 58\%$	41 p = 0.609 27 70 36 p = 0.069	235 - 225 - -	0.18 (0.07 - 0.47) 0.11 (0.02 - 0.52) 0.16 (0.07 - 0.36) 0.12 (0.03 - 0.53) 0.46 (0.33 - 0.63) 0.10 (0.02 - 0.45) 0.50 (0.28 - 0.83) 0.34 (0.19 - 0.60)	
Effect: $Z = 9.19$, $p < 0.001$; Baseline CD4 count 0 - 19 Badri (2002) [41] * Lannoy (2008) [46] All studies Effect: $Z = 4.39$, $p < 0.001$; Baseline CD4 count 200 - Badri (2002) [41] * Golub (2007) [44] Lannoy (2008) [46] Severe (2010) [50] † All studies Effect: $Z = 3.72$, $p < 0.001$; Baseline CD4 count > 350	9 cells/µL 5 - Heterogene 350 cells/µl 2 143 - 18 Heterogene cells/µL	148 - eity: / ² = 0%, ⊑ 121.2 - - - eity: / ² = 58%	41 p = 0.609 27 70 36 p = 0.069	235 - 225 - -	0.18 (0.07 - 0.47) 0.11 (0.02 - 0.52) 0.16 (0.07 - 0.36) 0.16 (0.03 - 0.53) 0.46 (0.33 - 0.63) 0.10 (0.02 - 0.45) 0.50 (0.28 - 0.83) 0.34 (0.19 - 0.60)	
Effect: $Z = 9.19$, $p < 0.001$; Baseline CD4 count 0 - 19 Badri (2002) [41] * Lannoy (2008) [46] All studies Effect: $Z = 4.39$, $p < 0.001$; Baseline CD4 count 200 - Badri (2002) [41] * Golub (2007) [44] Lannoy (2008) [46] Severe (2010) [50] † All studies Effect: $Z = 3.72$, $p < 0.001$; Baseline CD4 count > 350 Badri (2002) [41] *	9 cells/µL 5 - Heterogene 350 cells/µl 2 143 - 18 Heterogene cells/µL 2	$148 - \frac{1}{2} = 0\%,$ $= 121.2 - \frac{1}{2} - \frac{1}{2}$ $= 121.2 - \frac{1}{2} - $	41 - 27 = 0.609 $27 - 70 - 36 = 0.069$ 14	235 - 225 - - - 388.3	0.18 (0.07 - 0.47) 0.11 (0.02 - 0.52) 0.16 (0.07 - 0.36) 0.12 (0.03 - 0.53) 0.46 (0.33 - 0.63) 0.10 (0.02 - 0.45) 0.50 (0.28 - 0.83) 0.34 (0.19 - 0.60) 0.36 (0.10 - 1.74)	
Effect: $Z = 9.19$, $p < 0.001$; Baseline CD4 count 0 - 19 Badri (2002) [41] * Lannoy (2008) [46] All studies Effect: $Z = 4.39$, $p < 0.001$; Baseline CD4 count 200 - Badri (2002) [41] * Golub (2007) [44] Lannoy (2008) [46] Severe (2010) [50] † All studies Effect: $Z = 3.72$, $p < 0.001$; Baseline CD4 count > 350 Badri (2002) [41] * Cohen (2011) [42] *,†	9 cells/µL 5 - Heterogene 350 cells/µl 2 143 - 18 Heterogene <u>cells/µL</u> 2 17	$148 - \frac{1}{2} = 0\%,$ $= 121.2 - \frac{1}{2} - \frac{1}{2}$ eity: $l^2 = 58\%$ 100.1 1661.9	$41 \\ - \\ p = 0.609 \\ 27 \\ 70 \\ - \\ 36 \\ 5, p = 0.069 \\ 14 \\ 33$	235 - 225 - - - 388.3 1641.8	0.18 (0.07 - 0.47) 0.11 (0.02 - 0.52) 0.16 (0.07 - 0.36) 0.46 (0.33 - 0.63) 0.46 (0.33 - 0.63) 0.10 (0.02 - 0.45) 0.50 (0.28 - 0.83) 0.34 (0.19 - 0.60) 0.36 (0.10 - 1.74) 0.51 (0.28 - 0.91)	
Effect: $Z = 9.19$, $p < 0.001$; Baseline CD4 count 0 - 19 Badri (2002) [41] * Lannoy (2008) [46] All studies Effect: $Z = 4.39$, $p < 0.001$; Baseline CD4 count 200 - Badri (2002) [41] * Golub (2007) [44] Lannoy (2008) [46] Severe (2010) [50] † All studies Effect: $Z = 3.72$, $p < 0.001$; Baseline CD4 count > 350 Badri (2002) [41] * Cohen (2011) [42] *,† Golub (2007) [44]	9 cells/µL 5 - Heterogene 350 cells/µl 2 143 - 18 Heterogene cells/µL 2 17 32	$148 - \frac{1}{2} = 0\%,$ $= 121.2 - \frac{1}{2} - \frac{1}{2}$ eity: $l^2 = 58\%$ 100.1 1661.9	$41 \\ - \\ p = 0.609 \\ 27 \\ 70 \\ - \\ 36 \\ 0, p = 0.069 \\ 14 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33$	235 - 225 - - - 388.3 1641.8	0.18 (0.07 - 0.47) 0.11 (0.02 - 0.52) 0.16 (0.07 - 0.36) 0.12 (0.03 - 0.53) 0.46 (0.33 - 0.63) 0.10 (0.02 - 0.45) 0.50 (0.28 - 0.83) 0.34 (0.19 - 0.60) 0.36 (0.10 - 1.74) 0.51 (0.28 - 0.91) 0.39 (0.23 - 0.66)	

TB incidence during 3 years of HAART in Europe and North America with regression curve fitted

Number of cases per 1000 person-years of follow-up

Girardi E, Clin Infect Dis 2005, 41: 1772

Algorithm

Isoniazid preventive therapy in people living with HIV

- People living with HIV and:
 - with unknown or positive TST status, and
 - unlikely to have active TB
 should receive IPT for at least 6 months
 irrespective of their degree of
 immunosuppression

(strong recommendation)

Guidelines for intensified tuberculosis case-finding and isoniazid preventive therapy for people living with HIV in resourceconstrained settings

Does IPT work?

Systematic review of clinical trials in PLHIV

Relative risk, 95% CI

Akolo et al 2010, Cochrane review

IPT and drug resistant TB

• The use of IPT for PLHIV does not cause drug resistance TB.

Balcells 2006 meta-analysis

 Even with 50% baseline INH resistance there will be 50% of the subjects who will benefit from IPT - IPT recommended in Eastern Europe and Central Asia, where INH resistance is the highest

> TB/HIV Working Group of the Partnership Focus on European Region, Almaty, May 2010

Isoniazid plus antiretroviral therapy to prevent tuberculosis: a randomised double-blind, placebo-controlled trial

Figure 3: Cumulative hazard plot for antiretroviral therapy versus antiretroviral therapy plus isoniazid preventive therapy effect by time since randomisation

PROGRAMME

Nelson-Aalen cumulative hazard plot on a logarithmic y-scale to show proportionality of hazards over time periods. HRs shown are unadjusted. Treatment ended 1 year after participants were randomly assigned. Likelihood ratio test for interaction of treatment group with study time p=0.61, and assuming linear trend for study time p=0.34. HR=hazard ratio.

Rangaka MX et al, Lancet. 2014

IPT is not toxic to people who use drugs

Table 2. Final results of treatment of latent TB in 415 long term drug users who received INH≥7 days								
Outcome No (%)								
Completed treatment correctly	319 (76.9)							
Abandoned or changed treatment 71 (17.1)								
Elevation in ALT/AST 3-5X normal 34 (8.2)								
Hepatotoxicity all	20 (4.8)							
Hepatotoxicity clinical6 (1.4)								
Removed for other reasons 5 (1.2)								
Source: Fernandez-Villar <i>et al</i> Clinical Infectious Diseases 2003; 36:293–8								

Excessive alcohol consumption (OR 4.2, P=0.002) and underlying liver disease (OR=4.3, P=0.002) are associated with hepatoxicity

Xpert MTB/RIF in HIV settings – a vital opportunity

TUBERCULOSIS DIAGNOSTICS Xpert MTB/RIF Test

ABOUT THE XPERT MTB/RIF TEST

The rapid TB test – known as Xpert MTB/RIF- is a fullyautomated diagnostic molecular test. It has the potential to revolutionize and transform TB care and control. The test:

- simultaneously detects TB and rifampicin drug resistance
- provides accurate results in less than two hours so that patients can be offered proper treatment on the same day
- has minimal bio-safety requirements and training needs, and can be housed in non-conventional laboratories.

UPDATED WHO RECOMMENDATIONS

AS OF OCTOBER 2013

Strong recommendation:

 Xpert MTB/RIF should be used as the initial diagnostic test in adults and children presumed to have MDR-TB or HIV-associated TB

Xpert MTB/RIF for the diagnosis of pulmonary TB in PLHIV

HIV positive

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)
Balcells 2012	11	1	1	147	0.92 [0.62, 1.00]	0.99 [0.96, 1.00]
Boehme 2010a	7	0	0	2	1.00 [0.59, 1.00]	1.00 [0.16, 1.00]
Boehme 2010b	0	0	1	1	0.00 [0.00, 0.97]	1.00 [0.03, 1.00]
Boehme 2010c	60	0	6	81	0.91 [0.81, 0.97]	1.00 [0.96, 1.00]
Boehme 2010d	27	2	6	141	0.82 [0.65, 0.93]	0.99 [0.95, 1.00]
Boehme 2011c	90	1	18	263	0.83 [0.75, 0.90]	1.00 [0.98, 1.00]
Boehme 2011d	80	0	19	88	0.81 [0.72, 0.88]	1.00 [0.96, 1.00]
Boehme 2011e	3	2	0	31	1.00 [0.29, 1.00]	0.94 [0.80, 0.99]
Carriquiry 2012	44	2	1	84	0.98 [0.88, 1.00]	0.98 [0.92, 1.00]
Hanrahan 2013	36	2	16	325	0.69 [0.55, 0.81]	0.99 [0.98, 1.00]
Lawn 2011	42	2	30	320	0.58 [0.46, 0.70]	0.99 [0.98, 1.00]
Rachow 2011	41	1	9	49	0.82 [0.69, 0.91]	0.98 [0.89, 1.00]
Scott 2011	45	3	- 7	84	0.87 [0.74, 0.94]	0.97 [0.90, 0.99]
Theron 2011	32	7	14	- 77	0.70 [0.54, 0.82]	0.92 [0.84, 0.97]
Van Rie 2013	8	1	4	99	0.67 (0.35, 0.90)	0.99 (0.95, 1.00

HIV negative

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% Cl)	Specificity (95% Cl)	
Al-Ateah 2012	42	0	2	127	0.95 [0.85, 0.99]	1.00 [0.97, 1.00]		-	
Boehme 2010a	90	0	18	46	0.83 [0.75, 0.90]	1.00 [0.92, 1.00]			
Boehme 2010b	142	0	5	24	0.97 [0.92, 0.99]	1.00 [0.86, 1.00]	-		
Boehme 2010c	23	0	0	26	1.00 [0.85, 1.00]	1.00 [0.87, 1.00]			
Boehme 2010d	5	1	1	69	0.83 [0.36, 1.00]	0.99 [0.92, 1.00]	_		
Boehme 2010e	75	0	2	8	0.97 [0.91, 1.00]	1.00 [0.63, 1.00]			
Boehme 2011a	161	3	20	252	0.89 [0.83, 0.93]	0.99 [0.97, 1.00]	-	-	
Boehme 2011b	36	1	2	202	0.95 [0.82, 0.99]	1.00 [0.97, 1.00]		-	
Boehme 2011c	62	1	3	232	0.95 [0.87, 0.99]	1.00 [0.98, 1.00]		-	
Boehme 2011d	41	0	- 5	56	0.89 [0.76, 0.96]	1.00 [0.94, 1.00]			
Boehme 2011e	2	0	0	2	1.00 [0.16, 1.00]	1.00 [0.16, 1.00]			
Boehme 2011f	2	0	1	4	0.67 [0.09, 0.99]	1.00 [0.40, 1.00]			Xpert® MTB/RIF assay for pulmonary tuberculosis a
Hanrahan 2013	5	0	4	182	0.56 [0.21, 0.86]	1.00 [0.98, 1.00]	_	-	rifampicin registance in adults (Poview) Steingart K
Rachow 2011	17	0	2	53	0.89 [0.67, 0.99]	1.00 [0.93, 1.00]			njumpicin resistance in dualts (Review), Steingart Ki
Safianowska 2012	15	1	2	127	0.88 [0.64, 0.99]	0.99 [0.96, 1.00]		-	Schiller I. Horne DI. Pai M. Boehme CC. Dendukuri N
Scott 2011	12	0	2	17	0.86 [0.57, 0.98]	1.00 [0.80, 1.00]			
Theron 2011	68	9	14	195	0.83 [0.73, 0.90]	0.96 [0.92, 0.98]		-	The Cochrane Library, 2014, Issue 1
Van Rie 2013	2	0	1	33	0.67 [0.09, 0.99]	1.00 [0.89, 1.00]		<u> </u>	
							່ດ ດ່ວ ດ່າ ດ່ອ ດ່ອ 1	່ດ ດ່ວ ດ່າ ດ່ອ ດ່ອ 1	

Adapting Care: Xpert MTB/Rif for Faster TB detection

Figure 2: Time to diagnosis by smear microscopy, Xpert MTB/RIF, or liquid culture in culture-positive patients

*One patient's culture obtained at recruitment was positive after 59 days.

- Nurses coordinated Xpert use
- More TB cases detected from Xpert vs smear
- Time to TB diagnosis less with Xpert and smear vs TB culture
- Time to TB treatment reduced with Xpert

Initial Testing Algorithms Focused on Presumptive MDR TB Cases

Xpert MTB/RIF testing at 9 sites in Nigeria (January - December 2012)

* www.tbcare1.org/publications/toolbox/tools/lab/TB_CARE_I_GeneXpert_Core_Project_Final_Report.pdf

What is the best model for HIV/TB care?

- The one that is convenient for the patient and delivers quality care
 - Will vary according to HIV and TB prevalence
- Possible HIV/TB clinic models
 - Integrated and co-located models
 - Referral models- 2 separate clinics
- Considerations
 - Integrated models are optimal but require more effort on staff training and considerations such as infection control
 - Co-location not sufficient for optimal delivery of care

Legidor Quigley, Trop Med Int Health, 2013; Schwartz, IJTLD, 2013; Uyei, Health Policy and Planning, 2014

Persons who inject drugs: intersection of HIV/TB/HCV

- One third PWID are HIV-infected; two thirds are HCV infected
- High rates of TB infection
- Human rights violations may drive PWID away from care
- Access and retention in care facilitated by OST programmes

Getahun, Curr Opin HIV/AIDs, 2012; Grenfell Drug and Alcohol Dependence, 2013; Schluger, Drug and Alcohol Dependence, 2013

Incarcerated Populations- Left Behind

- TB spread enhanced in the prison setting
 - 1/11 of TB transmission in prison on high income countries
 - 1/16 of TB transmissions in low and middle income countries
- Crowded conditions
- Limited health access

Convergence of TB, HIV and injecting drug use in selected huigh burden countries with high per capita prisoners

Country	Prisoners/ 100,000 ¹	TB incidence/ 100,000 ²	PWID (n)	Anti-HCV in PWID (%) ³	Anti-HBV in PWID(%) ³
Russia	534	106	1825000	73	38
South Africa	318	981	262975	NK	NK
Brazil	261	43	800000	64	56
Thailand	137	137	160528	90	77

PWID = *People who inject drugs; HCV* – *Hepatitis C virus; HBV* – *Hepatitis B virus*

References: 1_http://www.prisonstudies.org/info/worldbrief/_2. WHO Global TB Control Report 2011 B. Nelson et al Lancet 2011, **378**:571-583

Patient centered – Programme Coordination

Conclusion

- Reduce mortality due to HIV associated TB (300,000 HIV/TB deaths)
 - PLHIV with TB should get ART within 2 weeks regardless of CD4 count (manage comorbidities (e.g. hepatitis)
- Prevent TB in PLHIV (>1 million HIV/TB cases)
 - Give earlier ART and provide IPT
 - Ensure TB infection control, especially for PLHIV
 - Screen PLHIV for TB using simple symptom based algorithm.
 - Scale up the use of molecular TB tests (e.g. Xpert MTB/RIF) among PLHIV and in suspected MDR
- Coordinate among TB, HIV, narcotics and prison health programs and deliver integrated services

